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Abstract 

Having introduced a novel Petri net based method for the verification of Lotes specifications 
[Barb 90a], this paper demonstrates its practical interest. Contrary to other similar Petri net 
based techniques, our approach avoids to build the whole Petri net from the Lotos specification 
before verification. In contrast to finite automata based methods, our method can analyse 
Lotos systems with unbounded state spaces. Our method is founded on a Place/Transition- 
net Lotos semantics. The method is applied to the verification of the Lotos model of fault 
protected system. 

1. I n t r o d u c t i o n  

Lotos [ISO 88] is a specification language for protocols and distributed applications. In this paper, 

we consider a Lotes specification which models the fault protection aspect of a small system. This 

system consists of two unreliable pieces of equipment and a standby equipment. InitiMly, the system 

is working and protected. When a failure occurs, the standby is substituted for the failed piece of 

equipment and the whole system moves to the ~working-unprotected" state. If a second equipment 

failure occurs, the whole system moves to the ~failed" state. To describe this model, only a subset 

of Lotos called Basic Lotos is required. Basic Lotos is introduced in w 2 whereas the Lotos model 

of the fault protected system is presented in w 3. 

The dynamic semantics of Lotos is defined formally. This means that formal verification is 

possible. Our verification method is based on Petri net theory. Petri net verification techniques are 

transferred to Lotos. So far, two transfer approaches have been proposed. A first approach consists 

of translating Lotos specifications into Petri nets and evaluating the properties on the equivalent 

Petri net models [Gara 90, and Marc 89]. 

We proposed a second approach which involves no translation from one formalism to another 

[Barb 90a]. We adapted to Lotos the well known Place/Transition-net (P/T-net) teachability 

analysis technique, namely, the Karp and Miller procedure [Karp 69]. In w 4 of this paper, we apply 

this technique for the verification of the Lotos specification of a fault protected system. 
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�9 2.  B a s i c  L o t o s  

Lotos consists of two sub-languages. First, there is a sub-language, based on Act One [Ehri 85], 

dealing with the description of data structures. Second, there is a sub-language, based on CCS 

[Miln 89], concerned with the description of dynamic discrete event processes. Basic Lotos is a core 

subset of the second sub-language. A Basic Lotos behavior expression is formed out of the following 

terms: 
Inadion stop 

Action prefix a; B 

Choice BxUB2 

Process instantiation Pig1, ..., g,] 

Pure interleaving BIlIIB2 
General parallel composition Bd[gx ,...,g.]lB2 

Successful termination exit 

Sequential composition B1 >>/32  

Disabling BI[> B2 

Hiding hide gl, ...,g, in/31 

where B, B1 and B2 are behavior expressions. The formal semantics of Lotos is given in [ISO 88]. 

3.  T h e  L o t o s  S p e c i f i c a t i o n  

To present the specification of the fault protected system, we adapted to Lotos Knuth's literate 

programming style [Knut 84]. 

1. The purpose of this Lotos specification is to define the model of a system which is composed 

of two pieces of equipment that can fail. The system is protected by one piece of standby equipment 

that can fail as well. When either two pieces of equipment or one piece of equipment and the standby 

are failed, the whole system is failed. The Lotos specification describes the failure as well as the 

repair of pieces of equipment. 

2. For readability, we define the following lists of gates: 

Lo =-- f l l ,  fl2, rpl, rp2, s f / ,  srpl, srp2, swsucc, sw f l  

L1 = res, f l l ,  fl2, rpl, rp2, s f l ,  srpl, srp2, swsucc, sw f l  

L2 =- f l l ,  rpl, sf l ,  srpl, srp2, swsucc, swf l  

L3 = f l l ,  fl2, rpl, rp2, swsucc, sw f l  

Lotos gates are synchronization points where atomic events occur. We interpret the above gates 

as follows: 

res (restart): The system had a breakdown and is restarted in the protected state. 

f l l  (failurel): A piece of equipment fails while the standby is available. 

f l2 (failure2): A piece of equipment fails while the standby is not available. 
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rpl (repairl): A piece of equipment is repaired while the system is working but unprotected. 

rp2 (repair2): A piece of equipment is repaired while the system is failed. 

sfl (standby failure): The standby fails, the system moves to the failed state. 

srpl (standby repair): The standby is repaired while the system is unprotected. 

srp2 (standby repair): The standby is repaired while the system is failed. 

swsucc (switch successful): This event models the successful substitution of the standby for a 

failed piece of equipment. 

swfl (switch failure): This event models the unsuccessful substitution of the standby for a failed 

piece of equipment. 

3. Here is an outline of the Lotos specification: 

specif icat ion ProtectedSystem [res]:noexit 

behav io r  

< Initial system behavior 4 > 

where  

< Definition of the system component 5 > 

< Definition of the piece of standby 6 > 

Definition of a piece of equipment 7 > 

endspe  

In accordance with the classification of Vissers et al. [Viss 87], the style of this Lotos specification 

is ~source-s~ate oriented. In the resource oriented style, the behavior of the system is defined as 

the composition of interacting components. Actually, we define the components "system", "piece of 

standby" and "piece of equipment". The components are specified using a state oriented approach. 

Every entity internal state is modelled as one Lotos process. 

4. The fault protected system initial behavior is defined as the parallel composition of four 

process instances. The instances correspond to the initial states of one system component, one piece 

of standby component and two pieces equipment components. Internal interactions are hidden. 

< Initial system behavior 4> =- 

hide Lo in ( ( protected [ L1 ] 

I[L2]I 
available [ L2 ] ) 

I[La]l 
( equip_work [ Ls ] Ill equip_work [ L3 ] ) ) 

5. The initial state of the system component is protected and may change to switching ( i.e., 

sys.switch) if a piece of equipment detects a failure. The standby is switched for the failed piece of 

equipment. The standby then does the work of the original piece of equipment. Next, there are two 

alternatives. If the standby does not detect a problem, the original piece of equipment is declared 
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as failed and the switching phase is complete. However, if the standby also detects a failure, the 

conclusion is that the malfunction origin is not the piece of equipment. And, the system moves to 

the breakdown state. In the latter situation, the system requires service and may then be restarted 
in the protected state. 

The system status may change from unprotected to failed (sys_fa~led) if either another piece of 
equipment fails or the standby fails. Two other alternatives are repair of a piece of equipment or 

repair of the standby. The system remains in the failed state until either a piece of equipment or 

the standby is repaired. Five processes are defined to model the five internal states of a "system" 
entity. 

< Definition of the system component 5 > - 

process  protected [ L1 ]:noexit:= 
fll;sys_switch [ L1 ] 
where  

process breakdown [ L1 ]:noexit:= 

res;protected [ L1 ] 
endproc  

process  sys_switch [LI ] :noexit := 

swsucc;unprotected [ LI ] U swfl;breakdown [ L1 ] 
endproc  

process unprotected [ L1 ]:noexit:= 
fl2;sys_failed [ L1 ] [1 sfi;sys_failed [ LI ] [] rpl;protected [ L1 ] ~ srpl;protected [ L1 ] 
endproc  

process sys_failed [ L1 ]:noexit:-- 

rp2;unprotected [ L1 ] U srp2;unprotected [ Ll ] 
endproc  

endproc  

6. The standby entity is initially inactive and available. When a piece of equipment failure 

occurs, it becomes active. If the switching phase succeeds, it behaves as a piece of equipment. Four 
processes are defined to model the four internal states of the standby. 

< Definition of the piece of standby 6 > - 
process  available [ L2 ]:noexit := 

fll;stan_switch [ L2 ] 

where  

process stan_switch [ L2 ]:noexit := 

swsucc;stan_work [ L2 ] U swfl;available[ L2 ] 

endproc  

process stan_work [ L2 ]:noexit:= 

sfl;stan_fsiled [ L2 ] U rpl;available [ L2 ] 

endproc  

process  stan_fsiled [ L2 ]:noexit := 
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srpl;available [ L2 ] [] srp2;stan_work [ L2 ] 

endproc  

endproc  

7. A piece of equipment is initially working and has four internal states modelled by four Lotos 

processes. 

< Definition of a piece of equipment 7 > -- 

process  equip_work [ Ls ] :noexit := 

ill;equip_switch [ L3 ] H fl2;equip_failed [ L3 ] 

where  

process  equip_switch [ L3 ] :noexi t := 

swsucc;equip_failed [ L3 ] [] swfl;equip_work [ L3 ] 

endp roc  

process  equip_failed [ L3 ]:noexit:-- 
rpl;equlp_work [ Lz ] ~ rp2;equip_work [ Ls ] 

endproc  

endp roc  

8. The goal of this model is to mimic the behavior of a real fault protected system. We expect 

some properties from this model which are listed below: 

P I :  If the system is in the protected state then the standby is available and two pieces of equipment 

are working. 

P2: If the system is in the unprotected state then either: (i) the standby and one piece of 

equipment are working, or (2) two pieces of equipment are working. 

PS: If the system is in the failed state then either: (1) two pieces of equipment are failed, or (2) 

the standby and one piece of equipment are failed. 

P4:  If the system is in the breakdown state then the standby is available and two pieces of 

equipment axe working. 

Correctness of the specification means that the aforementioned properties are satisfied. The 

assessment of correctness is the topic of next section. 

4. V e r i f i c a t i o n  B a s e d  o n  a P / T - n e t  S e m a n t i c s  

Our approach is based on a P/T-net  semantics for Lotos. That is, the execution of Lotos specifi- 

cations is modelled by P/T-nets. We first outline in w 4.1 the P/T-net  semantics for Lotos. The 

verification method itself is discussed in w 4.2 and w 4.3. 
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4 . 1 .  O v e r v i e w  o f  t h e  P / T - n e t  S e m a n t i c s  

We slightly deviate from the usual notation for P/T-nets [Pete 81]. We represent a P/T-net  as a 

tuple ( P, T, Act, Mo) where: 

�9 P is a set of places {pl, ...,p=}, 

�9 T _C A/"P x Act x N "P, is a transition relation, 

�9 Act is a set of transition labels, and 

�9 Mo E A rP, is the initial marking. 

A P/T-net  has a f ini te  s t r u c t u r e  if the sets P,  T and Act are finite. 

A r is the set of non-negative integers. A rP denotes the set of multi-sets over the set P.  A multi- 

set is a set that can contain multiple instances of the same element. An element t = (X, a, Y) E T 

is also denoted as X - a --, Y. Its p r e s e t  is X, its p o s t s e t  is Y and ac t ion  is a. The operators _<, 

+ and - denote respectively multi-set inclusion, summation and difference. A Petri net marking is 

also a multi-set. We denote by M(p~) (X(p~)/Y(p~)) the number of instances of the element p~ in 

the multi-set M (preset /postset) .  Instances of the element pi axe also called tokens inside place p~. 

Full Basic Lotos cannot be modelled by finite structure P/T-nets  [Barb 90b]. There is a theo- 

retical limitation. Basic Lotos has the computational power of Turing machines, this is not the case 

of P/T-nets.  Furthermore, data structures and their operations axe difficult to model concisely into 

P/T-nets.  We identified a subset of Basic Lotos, called PLotos, that can be modelled by P/T-nets,  

with bisimulation equivalence [Miln 83]. It consists of Basic Lotos plus easy to verify syntactical 

constraints. 

Def in i t i on  of P L o t o s  

Let pl be a process and Bpi the body of the definition of pl. We say that pl cal ls  p2 if instantiation 

of p2 is a subterm of Bpi. This relation is denoted as: 

C = {(Pl,V2): ~ calls ~ }  

Let C + be the transitive closure of G. We define in terms of C + the m u t u a l  r ecu r s ion  relation 

as follows: 

g : {(el ,P2) : (PI,P'2) E C "[" A (P2,Pl) E C'l '} 

The func t i ona l i t y  of a behavior B is equal to exit i f f  every alternative in B terminates with the 

successful termination action 6, otherwise it is equal to noexit. The execu t ion  p a t h s  of behavior 

expressions axe defined, as usual, by selective statements, namely, choice terms for Basic-Lotos. 

PLotos is defined as the subset of Basic Lotos that satisfies the following syntactical constraints: 

1. Guarded recursive processes: A process instantiation term is guarded if it  is in the scope of 

a prefixing operator " ; ' ,  or a sub-term of B2 of a sequential composition BI > >  B2 or of a 

disabling BI[> B2. 

2. Noexit fimctionality in independent parallelism: Operands B1 and B2 in a parallel composition 

BIIIIB2 must have the noexit functionality. 
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3. For every pair (Pl,P2) E M we must have: 

3.1. The general parallel operator [Lql, ...,g,]] does not occur on the execution path of B~I 

which leads to instantiation of P2. 

3.2. If B1 > >  B~ (or B1[>/32) is a sub-term of Bp~ then instantiation of p2 is not a sub-term 

of B1, also B1 must have the exit functionality. 

Stronger constraints, than constraints 2 and 3.1, are stated in [Gara 90] which disallow mutual 

recursion in sub-terms of the form "B~][[B2" and "B~]Lql,...,gn]]B2". They are such that the 

control can be modelled by a finite state automaton. In our case the operator "1191 .... ,gn]l ~ is 

disallowed on recursive paths, but mutual recursion is possible in sub-terms of the form "BII[IB~', 

with functionality noezit operands, the control is not finite state but can still be represented by a 

finite structure P/T-net .  

It is possible to simulate an arbitrarily large stack if the constraint 3.2 is not satisfied. Arbitrarily 

large stacks cannot be simulated by finite structure P/T-nets.  

The Lotos to P/T-nets mapping is based on the work of Olderog [Olde 87] and has two aspects 

i) a decomposition function, and ii) a set of inference rules. 

A Lotos behavior expression B generally represents the composition of several concurrent com- 

ponents. B is decomposed into a multi-set of behavior expressions which, when B is activated, may 

be interpreted as P/T-net  tokens. P/T-net  tokens are unstructured elements. The place in which 

a token is contained is named after the concurrent component that it denotes. For instance, let 

B = u; ~; stopl[u]lv; stop, then: 

dec(B) = {,,; ~; stopl[,,]h I[=]lv; stop} 

This means that instantiation of B is modelled as tokens deposited into places labelled u; v; stopl[u]l 
and I[,,]lv; stop. 

Inference rules are used to infer, from subsets of concurrent components, executable transitions. 

For instance, by application of appropriate inference rules we can infer that  the following transition 

is executable from dec(B): 

{u; v; stopl[ull, I[u]lu; stop} - u - - ,  {u; stopl[~,]l} 

Moreover, from the component set {u; stopl[u]l} the following transition is executable: 

{u; s t o p l [ u ] l }  - u --, {} 

The head of each rule is a term of the form: 

{Pa,. . . ,p,} -- a ~ {ql .... ,q.} 

Each rule can be used to infer, as a function of component structures, a transition with preset 

{Pa, ..., p,~}, action a and postset {ql, ..., q~}. For instance the rule: 

if M1 - a ~ M~ and a ~ {S, 6} 

then MI.I[S]lk - a --* M~.I[S]Ik 
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has been used to infer the second above transition: We substituted {u; stop}, u and v to respectively 

M1, S and a. M~ is empty because the decomposition of "stop" is defined as the empty set. The 

decomposition function and the inference rules are defined in [Barb 90a, Barb 90b]. 

Finally, note that we have also shown that conversely P/T-nets can be simulated in our Lotes 

subset, with language equality equivalence [Barb 90b]. This means that our Lotos subset and 

P/T-nets have the same computational power. Proofs of correctness can also be found in [Barb 

90b]. 

4 . 2 .  K a r p  a n d  M i l l e r  G r a p h s  f o r  L o t o s  

Given a Lotos specification, it is possible to construct an equivalent P/T-net model by successive 

applications of the inference rules discussed above. This P/T-net then becomes the input of the 

reachability analysis algorithm to evaluate the properties. In our approach, we skip the intermediate 

Lotos to P/T-nets translation step. We derive the reachability graph directly from the Lotos 

specification, then properties are evaluated. The syntax of the readability graph slightly deviates 

from the usual syntax for Karp and Miller graphs. We first discuss the derivation of Karp and 

Miller graphs for Lotos. 

P/T-nets as well as PLotos are not finite state systems. This means that classical finite 

state/transition system reachability analysis [Boch 78] does not work for P/T-nets. Karp and 

Miller graphs are finite representations of in general infinite reachability graphs. As other teacha- 

bility graphs, vertices are labelled with states and edges with transitions. However, a single state 

in the coverability graph may represent an unbounded number of "equivalent" reachable states. 

In our case, states are multi-sets of Lotos behavior expression components. We label the root 

of the graph with the decomposition of the Lotos expression that represents the initial system 

behavior. For example, the initial behavior 130 of the protected system is1: 

(protected[ L1] l [ L2] [avai lable[ L2] ) l [ La] l ( equip-wor k [ L3] l l lequip-work [ L3] ) 

The decomposition of Bo, dec(Bo), yields the state represented as the following box: 

1/protectedtLllltL2llltL3ll I 
1/l[L~]lavaitabte[L~]l[Lz]l 
2~IlLs]l equip_work[L3] 

Every line in the box defines the number of instances of one process type in the current state. 

In case there is an unbounded number of occurrences, the process is paired with the w symbol. 

We go from one state to another by application of the inference rules. An inference rule is 

applicable from one state if a finite subset of the expression component multi-set matches the 

preset of the transition in the head of the rule. The successor state is obtained by removing this 

preset from the current state and adding the postset defined by the transition (reformulation of 

the usual P/T-net transition firing rule). Every edge is labelled with the number of the inference 

rule, which has been applied to derive the transition, and the action name of the transition. A 

Karp and Miller graph is also called a coverability graph because for every reachable state s of the 

tWe choose the unbidden version of the behavior in order to obtain meaningful transition labels in the graph. 
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ij 

Figure 1: Fault protected system coverability graph 

model, there exists a state 8' in the Karp and Miller graph such that 8 _< 8' (the operator < denotes 
multi-set inclusion). The Karp and Miller procedure adapted to Lotos is precisely defined in [Barb 

90a]. 

The coverability graph of the fault protected system is shown if Fig 1. For conciseness, Lotos 

expression components are shown as ql, ..., q12 which axe equivalent to: 

ql = b r e a k d o w n [ L 1 ] l  [L2]II[Ls]I, system in the breakdown state. 

q2 --wotected[L1]l[L2]ll[Ls]l, system in the protected state. 

q3 - 8ys - swi tch[L1] l [L2] l l [L3] l ,  system in the switching phase. 

q4 =- unFrotected[Ll]l[L2][l[La]l, system in the unprotected state. 

q5 = 8ys-failed[L~]l[L2]ll[Ls]l, system in the failed state. 

qs - I[L2]lavailable[L2]l[La][,  standby is available. 

q~ -= I[L2]lstan-~witch[L2]l[Ls][, standby in the switching phase. 

qs - I [L2] l s tan -work[L2] l [Ls] l ,  standby in the working state. 

q9 = I[L2]Js tan- fa i l ed[L2] l [Ls] l ,  standby in the failed state. 

qlo = I [La] l equ ip -work ing [L 3] ,  a working piece of equipment. 

q n  =- I [La] l equ ip -~v i t ch[L3] ,  a piece of equipment in the switching phase. 

ql2 = I [ L s ] l e q u i p - f a i l e d [ L s ] ,  a failcd piece of equipment. 
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4 . 3 .  V e r i f i c a t i o n  o f  P r o p e r t i e s  

Verification consists of determining if the model is "correct" and satisfies certain properties. The 

properties can be classified into two groups: (1) general properties, and (2) specific properties. 

General properties are independent of the goal of the modelled system whereas specific properties are 

strongly related to the system function. In the field of communication protocols, deadlock freeness 

and conformity with the service are examples of, respectively, general and specific properties. 

By examination of Fig. 1, we can identify the following general properties: (1) The fault protected 

system is finite state because there is no marking that contains a component paired with the w 

symbol, (2) for t h e  s a m e  reason the bounded process instantiation property is satisfied, and (3) 

every state has successors, consequently the model contains no deadlock. 

The goal of our model is to mimic the behavior of a real system, with respect to the fault 

protection aspect. The real system properties are listed under item 8 in w 3, they are evaluated with 

the help of the coverability graph. First, these specific properties have to be expressed formally. We 

use logical formulae, i.e. assertions, to formalize the properties. The expression "s(q~)" denotes the 

number of occurrences of the Lotos expression component qx in state s. The expression ~s(qx) = n" 

is true if state s contains n occurrences of qx, otherwise the expression evaluates to false. We 

sometimes consider s(q~) as a predicate which is true if "s(q~) > 0" and false if "s(q~) = 0". We 

denote as R S  the set of reachable states. The above four properties are formally stated as follows: 

Vl :  Vs e RS.s(q2) =~ s(qs) A s(qm) = 2 

P2:  Vs e RS.s(q4) =~ [(s(qs) A s(ql0)) V s(qx0) = 2] 

P3:  Vs E RS.s(qs) =~ [s(q12) = 2 V (s(qs) A s(q,2))] 

V4: Vs E RS.s(ql )  =~ s(qe) A 8(qm) = 2 

To verify the properties, we must check that every reachable state satisfies the assertions. A 

quick visual inspection of the coverability graph of Fig. 1 reveals that the above assertions axe 

satisfied by the model. 

5. C o n c l u s i o n  

We introduced a novel verification method for Basic Lotos specifications based on Petri net theory. 

The method can handle non-finite state systems although.the example presented in this paper has 

the finiteness property. 

The verification method consists of building a coverability graph. We use a notation slightly 

different from the usual syntax for Karp and Miller graphs. Properties are stated by logical formulae 

and evaluated by visual inspection of the coverability graph associated with the Lotos specification. 

In contrast to other similar approaches, no intermediate Petri net coding is required. That means: 

(1) a verific.~tion procedure of lower complexity, and (2) teachability graphs that are easier to 

interpret since states contain Lotos expressions nearly in their original form. 
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